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Introduction

Our awarded research project is to engineer the next generation of novel anticancer bio-agents
that will target and eradicate a broad spectrum of solid tumors including breast cancer. Our research
design was based on the hypotheses that (1) the next generation of bio-agents could be engineered
to continuously produce doses of an anticancer drug (specifically FK228) at the sites of bacterial
spore germination and vegetative growth in the hypoxic/necrotic regions of solid tumors, and (2) that
the synergistic actions of bacterial consumption of tumor mass and anticancer drug activities could
destroy many kinds of solid tumors regardless of cancer genotype, without the need for prodrug
injections and could overcome the common side effects and less efficacy of current cancer therapies.

The project has three specific aims, corresponding to three tasks defined in the State of Work,
with each aim/task to be accomplished in each of the three-contract year duration. The first two
aims/tasks are: (1) to reconstitute the FK228 biosynthetic gene cluster and engineer complete
expression cassettes, and (2) to transfer the expression cassettes into the E. coli strains as pilot
experiments. Our research in the first contract-year has achieved those aims/tasks with some
adjustments of the experimental approach and research content.

Key Research Accomplishments

1. Confirmation of a redox enzyme (encoded by depH) responsible for a critical disulfide bond
formation as the final step in FK228 biosynthesis.

In our previous work, we cloned the FK228 biosynthetic gene cluster and proposed a working
model for FK228 biosynthesis in which a putative FAD-dependent pyridine nucleotide-disulfide
oxidoreductase encoded by depH gene catalyzes a disulfide bond formation as the final step of
FK228 biosynthesis (Cheng, Yang et al. 2007). In this work (as a continuation of the previous work),
we validated this point of hypothesis by genetic and biochemical studies. First, bioinformatic analysis
of DepH protein sequence indicated that DepH is a redox enzyme that contains an FAD-binding
domain, an NADP*-binding domain, and a redox motif consisting of two cysteine residues separated
by two less conserved amino acids (CxxC). Second, we created a mutant strain by deleting the depH
gene and found that deletion of depH gene severely impaired FK228 production in the mutant strain
(~20% of FK228 production level remains, probably due to spontaneous chemical oxidation).
Complementation of the mutant with a functional depH completely restored FK228 production.
Furthermore, an FK228 precursor (intermediate) with a +2 m/z shift was detected by LC-MS in the
mutant extract. Those observations suggested a definite role of DepH for FK228 biosynthesis, likely
involved in the conversion of the precursor (reduced FK228 with two free thiol groups) to FK228.
Finally, we overexpressed the depH gene and purified DepH protein from E. coli culture; we
performed extensive in vitro assays to determine the presence of an FAD factor in DepH holo-
enzyme, the enzyme kinetic parameters and the redox reactions (Fig. 1). Collectively this work
represents the first genetic and biochemical study of a rare disulfide bond formation in natural
products produced by bacteria. An article has been published in the journal of Chemistry & Biology
(Wang, Wesener et al. 2009).

Hybrid
NRPS/PKS —= FK228 DepH

—— FAD +
pathway red NADP Oxidative
cellular
processes
FK228 DepH NADPH

Fig. 1. Proposed sequence of redox reactions in the final step of FK228 biosynthesis.
Abbreviations or symbols: FK228=(SH)2, the reduced form of FK228 (immediate FK228
precursor); FK228=(S-S), the oxidized (natural) form of FK228; DepH=(SH)2, the reduced form of
DepH; DepH=(S-S), the oxidized form of DepH; FADox, the oxidized form of FAD; FADred, the
reduced form of FAD.




2. ldentification of an unexpected pathway regulatory gene depR (previously annotated as orf18)

Also in our previous work, we predicted, largely based on bioinformatic analysis of gene/deduced
protein sequences, that the FK228 biosynthetic gene cluster contains a pathway regulatory gene depL
(encoding a MarR-family transcriptional regulator), and the orf18 (encoding a hydrogen peroxide-
inducible transcriptional activator) is beyond the gene cluster boundary (Cheng, Yang et al. 2007). In
this work (as a continuation of the previous work), we discovered, through systematic gene mutation
and quantitation of FK228 production in mutant strains, that depL plays only a minor role in FK228
production because deletion of depL resulted in just a slight reduction of FK228 production (~75% of
the wild type level); while that, in contrast, orf18 (now renamed as depR) plays a major role in
regulating FK228 production because deletion of orf18/depR completely abolished FK228 production
and complementation of the orf18/depR-mutant restored full FK228 production (Fig. 2). Further RT-
PCR analysis confirmed that none of the dep-genes was actively expressed in the orf18/depR-
deletion mutant. We have consequently redesigned the downstream experiment. A manuscript is in
preparation and will be submitted for publication very soon (Potharla et al, expected in early 2010).
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Fig. 2. FK228 peoduction in the wild type and mutant strains of C. violaceum No. 968
by LC-MS. (A) Wild type strain, (B) depL-deletion mutant, (C) orf18/depR-deletion mutant,
and (D) complemented orf18/depR-deletion mutant.

3. Successful reconstitution of FK228 biosynthetic gene cluster on three vectors in an E. coli strain
and the detection of heterologous FK228 production in E. coli under both aerobic and anaerobic
growth conditions

Because of the unexpected identification of orf18/depR as a major pathway regulator of FK228
biosynthesis, we decided to take a cautious step to verify whether all genes required for FK228 have
been identified. Instead of taking a great leap to reconstitute the entire FK228 biosynthetic gene
cluster into one expression cassette, we designed a new and quick approach to test whether FK228
can be produced in E. coli (Fig. 3A). In this design, a schematic E. coli cell contains three compatible
and self-replicable constructs:

(1) Cosmid 18 is the originally reported construct that contains the dep gene cluster and flanking
DNAs (Cheng, Yang et al. 2007). Cosmid 18 has a pUC origin of replication and contains both
an ampicillin-resistance marker gene and a kanamycin-resistance marker gene. However,
expression of the dep-genes on Cosmid 18 requires a functional orf18/depR [see following (3)].

(2) Construct pCDFDuet-X-Y is a dual expression vector carrying a combination of two
heterologous genes (X = sfp; Y = fabD1 or fabD2) necessary for FK228 biosynthesis. Gene sfp
encodes an Sfp-type phosphopantetheinyl transferase (PPTase) to covert all carrier proteins
(ACPs and PCPs) from apo-form into holo-form by attaching a flexible phosphopantetheinyl



arm. Both gene fabD1 and fabD2 encode a malonyl CoA acyltransferase (MCAT) that
participates in fatty acid biosynthesis, but is also involved in FK228 biosynthesis (as proven in
this experiment). pCDFDuet-X-Y has a CDF origin of replication and contains a streptomycin-
resistance marker gene. The expression of heterologous genes is inducible by IPTG.

(3) Although orf18/depR resides on Cosmid 18, it is not expressed due to the fact the promoter
region of the operon which orf18/depR resides is missing (Cheng, Yang et al. 2007). Therefore
we decided to add yet another construct which carries orf18/depR on a lactose-inducible vector
pBMTL-3. This vector has a broad host-range, has a pBBR1 origin of replication and contains a
chloramphenicol-resistance gene (Lynch and Gill 2006).

A
E. coli
cell
Intens J20. *MS, 4.14.3min| - Fig 3. Reconstitution of FK228 biosynthetic gene cluster and
B 2 5391/ [FK228 +H]* heterol_ogous prqduction of FK228 in E. coli. (A) 'Scheme of a
] | recombinant E. coli cell harbors three constructs. Cosmid 18 contains
= 529.5 “l 5796 5031 the originally reported dep gene cluster. A duet vector pCDFDuet
] ' | 561.4 ’ > carrys a combination of two discrete genes (sfp encodes an Sfp-type
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Intens.=[15. +Ms, 3a4.9min] Pathway regulatory gene orf18/depR, inducible by lactose. (B) LC-MS
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This recombinant E. coli strain was cultivated in LB medium supplemented with appropriate
concentrations of antibiotics (25 pg/ml kanamycin, 100 pg/ml streptomycin, and 10 pg/ml
chloramphenicol) under anaerobic or aerobic conditions at room temperature without agitation. IPTG
(0.5 mM final concentration) and lactose (2% final concentration) were added to cultures at 12 hours
and the cultures were allowed to growth for three more days. Resins (as absorbent for FK228) and
cells were harvested by centrifugation, freeze-dried, and eluted with ethyl acetate. Organic extracts
were concentrated with a rotary evaporation and subjected to LC-MS analysis (Fig. 3B and 3C). To
our delight, FK228 was produced by the E. coli strain under both anaerobic and aerobic conditions.
We estimated that FK228 was produced at approximately 0.4 mg/L (740 nM) concentration under
anaerobic growth conditions, which is about 1/10 of the FK228 concentration produced under aerobic
growth conditions. Since FK228 was reported to exert potent anticancer activities from high nM to low
MM range of concentrations by intravenous injection during clinical trials (NCI 2009), our result
appears to be very promising because 740 nM concentration of FK228 should be sufficient to elicit
anticancer efficacy especially when FK228 is produced de novo inside a solid tumor. Nevertheless,
we still hope to increase the FK228 titer by optimize the IPTG/lactose induction ratio and timing, and



by integrating the gene cluster into host chromosome. Another manuscript is in preparation and will be
submitted for publication within six months (Wesener et al, expected in mid-2010).

Reportable Outcomes:

1. One paper was published in June 2009 (Wang, Wesener et al. 2009) (attached as an appendix).
2. One manuscript is in preparation and will be submitted for publication within two months.
3. One more manuscript is in preparation and will be submitted for publication within six months.

Conclusion

We have reconstituted the FK228 biosynthetic gene cluster on three plasmids in an E. coli strain
and the recombinant strain produced FK228 under both anaerobic and aerobic growth conditions. We
estimated that FK228 was produced at about 0.4 mg/L (740 nM) concentration under anaerobic
conditions; this concentration should be sufficient to elicit anticancer efficacy especially when FK228
is produced de novo inside a solid tumor. Attempt to integrate the complete FK228 biosynthetic gene
cluster into the E. coli chromosome for stable functioning without antibiotic selection is in progress.
We therefore have achieved the project milestone with some adjustments of the experimental
approach and research content.
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SUMMARY

Disulfide bonds are rare in bacterial natural products,
and the mechanism of disulfide bond formation in
those products is unknown. Here we characterize
a gene and its product critical for a disulfide bond
formation in FK228 anticancer depsipeptide in Chro-
mobacterium violaceum. Deletion of depH drastically
reduced FK228 production, whereas complementa-
tion of the depH-deletion mutant with a copy of
depH onamedium copy-number plasmid not only fully
restored the FK228 production but also significantly
increased the FK228 yield. Purified 6xHis-tagged
DepH fusion protein in native form is a homodimer of
71.0 kDa, with each monomer containing one mole-
cule of FAD. DepH efficiently converts an immediate
FK228 precursor to FK228 in the presence of NADP*.
We conclude that DepH is an FAD-dependent pyridine
nucleotide-disulfide oxidoreductase, specifically and
efficiently catalyzing a disulfide bond formation in
FK228.

INTRODUCTION

Disulfide bonds that link two nonadjacent cysteine residues
often exist in ribosomally synthesized proteins and peptides as
well as their derived products, such as lantibiotics, toxins,
venoms, and hormones, to maintain proper folding configura-
tion, to mediate redox cycling of enzyme activity, or to regulate
a protein’s activation and deactivation (Giles et al., 2003; Kado-
kura et al., 2003). Proteins that are capable of catalyzing protein/
peptide disulfide bond formation are members of a large collec-
tion of thiol-disulfide oxidoreductases found in all living cells.
Many of these enzymes belong to the thioredoxin superfamily,
which is defined by an active site containing a CXXC redox motif
(cysteines separated by two amino acids) and by a thioredoxin
fold seen in three-dimensional structure of the prototypical thio-
redoxin 1 of E. coli (Lennon et al., 1999; Waksman et al., 1994).
The most studied catalysts for disulfide bond formation are
the Dsb-family of proteins (DsbA, DsbB, DsbC, and DsbD) of
E. coli (Bardwell et al., 1991; Martin et al., 1993; Nakamoto and
Bardwell, 2004). Other enzymes that are not members of the

thioredoxin superfamily but use redox active cysteine residues
in transferring electrons in oxidative and reductive pathways
have entirely different three-dimensional structures from thio-
redoxin. They might use small molecule electron donors and
acceptors, such as FAD, NAD*/NADH, NADP*/NADPH,
quinone, or lipoic acid (Bryk et al., 2002).

Disulfide bonds are also found in small molecules (natural
products) made nonribosomally by a serial of biochemical reac-
tions catalyzed by enzymes other than the ribosomal machinery.
Most of those natural products are produced by garlic plants or
fungi (Jacob, 2006) and a few are produced by bacteria (Figure 1),
but the enzymology of disulfide bond formation in those products
is largely unknown. Based on a study of heterologous production
of echinomycin in E. coli, Watanabe et al. proposed the Ecm17
protein (encoded by ecm17 gene in the echinomycin biosynthetic
gene cluster) as an oxidoreductase that catalyzes the formation
of adisulfide bond in a triostin A precursor to afford triostin A (Wa-
tanabe et al., 2006), but there was no biochemical evidence to
support this plausible notion. Disulfide bond in triostin A is not
critical for bioactivities because it can be further modified by
a SAM-dependent methyltransferase to form a thioacetal bond
in the final product echinomycin. Triostin A is a member of the
quinoxaline family of antibiotics that also include BE-22179,
SW-163C, and thiocoraline (Dawson et al., 2007) (Figure 1). There
is no molecular genetic study of the biosynthesis of BE-22179 or
SW-163C. Surprisingly the thiocoraline biosynthetic gene cluster
does not contain a gene encoding an Ecm17-like enzyme or, in
a broad sense, a thioredoxin-like oxidoreductase (Lombo et al.,
2006). It is unclear whether the disulfide bond in thiocoraline is
formed by an unidentified enzyme encoded by a gene indepen-
dent of the gene cluster or simply by chemical oxidation. Finally,
the biogenesis of a disulfide bond in FR901,375 (Masakuni et al.,
1991), spiruchostatins (Masuoka et al., 2001), somocystinamide
A (Nogle and Gerwick, 2002), or a dithiolane bond in leinamycin
(Tang et al., 2004), remains to be elucidated.

FK228 (depsipeptide; Figure 1) is a rare disulfide-containing
natural product produced by Gram-negative Chromobacterium
violaceum No. 968 as a prodrug (Shigematsu et al., 1994;
Ueda et al., 1994). Prodrug FK228 can diffuse across the cell
membrane and be readily activated by intracellular reduction of
the disulfide bond inside the cytoplasmic environment of
mammalian cells. Upon activation, the freed thiol group on the
longer aliphatic tail of reduced FK228 fits inside the catalytic
pocket of preferred class | histone deacetylases (HDACs),

Chemistry & Biology 76, 585-593, June 26, 2009 ©2009 Elsevier Ltd All rights reserved 585


mailto:ycheng@uwm.edu

KL M N
FK228 biosynthetic gene cluster {2 D

depA B c D E

Chemistry & Biology
Disulfide Bond Formation in FK228

Figure 1. FK228 Biosynthetic Gene Cluster
and Structures of Disulfide- or Dithiolane-

A

% / N

Simple
it DepH

building ——>_
blocks

FK228 precursor

(Reduced FK228)
CHy cH3O\/ CHy CH o\/
X ]\W AL X ]\W xmf
/\f _Eomi7_ o~ c:\f

FR901,375
(Depslpeptlde)

Simple 0 ?HJ /sH o cH3
RGN

buildin,
9 S )g[
A o CH CHy O Q A o cH3 CHy o

blocks o
Triostin A precursor

C@YMW(IU? QCE@*

Triostin A

%( Y[ */“m”Nm JI “I s % m AVM »wmm)m

HiCs”

BE-22179 SW-163C

chelating Zn?*, and partially inhibits the enzyme activities (Naka-
jima et al., 1998). Selective but modest inhibition of HDACs leads
to a cascade of chromatin remodeling, tumor suppressor gene
reactivation, apoptosis, and regression of cancer (Bolden
et al., 2006). FK228 has become one of the most promising
anticancer agents specifically intervening cancer epigenetics
(Yoo and Jones, 2006).

Aimed at diversification and optimization of FK228 through
metabolic engineering, combinatorial biosynthesis, and chemo-
enzymatic synthesis, we previously cloned and partially charac-
terized the FK228 biosynthetic gene cluster (designated as dep
for depsipeptide). Based on the deduced protein functions
of dep genes, we proposed an unusual hybrid nonribosomal
peptide synthetase (NRPS)-polyketide synthase-NRPS pathway
for FK228 biosynthesis in C. violaceum no. 968 (Cheng et al.,
2007). This pathway would lead to the production of an imme-
diate FK228 precursor (reduced FK228) with two free thiol
groups from cysteine residues (Figure 1). Furthermore, we
proposed DepH as a putative FAD-dependent pyridine nucleo-
tide-disulfide oxidoreductase, encoded by depH, to catalyze
a disulfide bond formation between two thiol groups as the final
step in FK228 biosynthesis.

Here we report genetic and biochemical evidence in support
of DepH as an FAD-dependent pyridine nucleotide-disulfide
oxidoreductase, specifically and efficiently catalyzing a disulfide
bond formation in FK228. To our best knowledge, this work
represents the first biochemical characterization of an enzyme
involved in the formation of a disulfide bond in a nonribosomally
produced bacterial natural product.

RESULTS

Protein Sequence Analysis of DepH

Gene depH in the FK228 biosynthetic gene cluster has an open
reading frame (ORF) of 960 bp and was predicted to encode a
319-amino-acid FAD-dependent pyridine nucleotide-disulfide
oxidoreductase, DepH (GenBank accession number ABP57752),
that converts two thiol groups from cysteines into a disulfide
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bond as the final step of FK228 biosyn-
thesis (Cheng et al., 2007). Primary
sequence of DepH shares a 72% iden-
tity/85% similarity to a hypothetical
protein (GenBank accession number
ABC38333; named TdpH in our ongoing work) of Burkholderia
thailandensis E264 (Kim et al., 2005), and shares modest
percentages of identity/similarity to a few hypothetical proteins
of Pseudomonas, Sinorhizobium, or Cellvibrio species. Neither
the DepH nor the TdpH sequence has more than 34% identity/
46% similarity to the deduced Ecm17 sequence of the ecm17
gene in the triostin A/echinomycin biosynthetic gene cluster in
S. lasaliensis (Watanabe et al., 2006). A phylogenetic analysis
of the sequences of DepH and its closest homologs, and other
well-studied proteins involved in disulfide bond formation in pro-
teogenic products, suggests that an active site containing
a CXXC redox motif is conserved in all related proteins; but
DepH, TdpH, Echm17 and a few hypothetical proteins constitute
a distinctive clade (group 1) of proteins with a CPY/FC motif,
which is clearly different from that (CAT/VC) of the thioredoxin
reductase (TrxB/TrxR) family of enzymes (group 2) or that
(CXXC; X represents any less conserved residue) of the Dsb-
family of enzymes (group 3) (Figure 2A). Site-directed mutagen-
esis experiments have confirmed the catalytic essentiality of
both cysteine residues in the CPYC redox motif of DepH (see
Enzyme Activity and Kinetics). Furthermore, DepH can be
dissected into an FAD-binding domain, an NADP*/NADPH-
binding domain and two terminal regions, according to its orga-
nizational similarity to the TrxR of Mycobacterium tuberculosis
(Akif et al., 2005) (Figure 2B).

CH3

Genetic Confirmation of the Involvement of depH

in FK228 Biosynthesis

We adopted and further improved an efficient, broad host-range
genetic system for gene deletion, marker removal, and gene
complementation in C. violaceum No. 968, and potentially in
a wide range of other Gram-negative bacteria (Cheng et al.,
2007; see Supplemental Data available online). Subsequently
we created two lines of C. violaceum depH™ mutant (Table S1;
Figures S1 and S2). In mutant CvAdepH::FRT, a 555 bp internal
part of depH is replaced by an FRT cassette from pPS858
(Hoang et al., 1998). Due to a concern about a potential polar
effect on the functioning of downstream genes (see the dep

586 Chemistry & Biology 16, 585-593, June 26, 2009 ©2009 Elsevier Ltd All rights reserved
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Protein Phylogenetic Tree Accession No. Motif Group

C. violaceum No.968 Deplf — — — ABP57752 ——— CPYC
B. thuilandensis E264 Tdp ~— — ABC38333 ——— CPYC
P acruginosa PAI4 Hp — — — — ABJ13448 ——— CPYC
S iedicae WSMAI9 Hp — — — — ABR62383 ——— Cpyc| Group 1
C. japenicus Uedald7 Hp — — — ACEB3946 — —— CPYC
8. lasaliensis Ecml7 ~ — — — — BAE98166 ——— CPFC
E. coli KI2 MG1655 TrxB — — — POASP4 ———— CATC
—EM. tuberculosis H37Rv TrxR  — — CAA16226 — —— CATC| Group 2
B. subrilis str168 TrxB — — — — P80880 ———— CAVC
— B. subtilis str168 BdbB — — — — 064037 ———— CVLC
B. subtilis str168 BdbC ——— — 032217 ———=— CELC
E. coli KI2 MGI655 DsbB — — — POASM2 ———— CVLC
E. coli KI2 MG1655 DshD — — — P36655
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Figure 2. Sequence Analyses of DepH

(A) Phylogenetic analysis of DepH, its closest homologs, and representative
bacterial proteins involved in protein/peptide disulfide bond formation. Amino
acid sequences were obtained from the GenBank database, alignment was
performed with ClustalW program (Chenna et al., 2003) and phylogenetic
tree is presented as a rooted dendrogram. Each protein sequence is labeled
by a strain name followed by a protein name where available, or by “Hp” (hypo-
thetical protein). Database accession numbers are listed in the separate
column. The redox motif (CXXC) of each protein was extracted from aligned
sequences. Proteins are classified into three groups according to their phylo-
genetic relationships and their redox motif residues.

(B) Scheme of domain organization and the position of the redox motif of
DepH.

gene cluster organization in Figure 1), we excised the FRT
cassette from CvAdepH::FRT by a site-specific Flp endonu-
clease encoded by vector pBMTL3-FLP2 and created
a marker-free mutant CvAdepH with only a 85 bp scar left at
the site of gene deletion. Furthermore, we complemented this
CvAdepH mutant with a copy of depH on a medium copy-
number expression vector (pBMTL3-depH), resulting in a com-
plementant strain CvAdepH/pBMTL3-depH.

Examination of FK228 production in the wild-type strain
(CvWT), CvAdepH mutant strain, CvAdepH/pBMTL3-depH
complementant strain, and a CvWT/pBMTL3-depH control strain
of C. violaceum by liquid-chromatography mass spectrometry
(LC-MS) analysis revealed very interesting results (Figure 3). First,
consistent with a previous study (Cheng et al., 2007), the CvWT
strain produced a signature profile of three FK228 ion adducts,
[M + H]" = 540.3 m/z, [M + Na]* = 563.3 m/z, and [M + K]* =
579.3 m/z. Second, the CvAdepH mutant strain produced
much less FK228 (~20% of the wild-type level). When the sample
extract of this strain was concentrated 5-fold and analyzed again,
a shoulder ion signal peak right next to each main signal peak
became noticeable. When we zoomed in, we found that those
shoulder peaks had a +2 m/z value corresponding to each of
the main signal peaks. Those signals, [M + 2 + H]* = 542.4 m/z,
[M + 2 + Na]* = 565.4 m/z, and [M + 2 + K]* = 581.3 m/z, were
apparently from an immediate FK228 precursor—the unoxidized
(reduced) precursor with two free thiols (Figure 1). Furthermore,
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Figure 3. Detection and Quantification of FK228 Production by
LC-MS Analysis

The relative abundance of FK228 production is estimated by the sum of ion
signals from three signature peaks of each strain/sample.

(A) Sample from the wild-type strain (CYWT).

(B) 1X and 5X concentrated samples of the depH-deletion mutant strain
CvAdepH.

(C) Sample from the CvAdepH/BMTL3-depH complementant strain.

(D) Sample from the CvWT/BMTL3-depH control strain.

the CvAdepH/pBMTL3-depH complementant strain not only re-
gained FK228 production, but also produced about 30% more
FK228 than the CvWT strain, indicating that the DepH-catalyzed
disulfide bond formation is a rate-limiting step in FK228 biosyn-
thesis inside the reducing environment of bacterial cells. Finally,
the CvWT/pBMTL3-depH control strain indeed produced signif-
icantly (~34%) more FK228 than the CvWT strain, confirming that
DepH-catalyzed disulfide bond formation is the rate-limiting step
in FK228 biosynthesis.

Overexpression, Purification and Initial

Characterization of DepH

DepH was overexpressed as an N-terminal 6xHis-tagged fusion
protein and was purified using Ni-NTA agarose chromatography
to 95% homogeneity. The yield was about 30 mg/L under the
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Figure 4. Purification and Characterization of DepH

(A) Ni-NTA affinity-purified DepH was visualized on a SDS-PAGE gel.

(B) The molecular mass of DepH was determined by size exclusion chromatog-
raphy. Protein standards were used to generate a standard curve. The inset
shows an elution profile of DepH bracketed by two protein standards.

(C) UV/Vis absorbance spectra of DepH and an FAD standard. The concentra-
tions of FAD standard and DepH were 25 uM and 36 uM, respectively, both in
20 mM Tris-HCI (pH 7.0) and 100 mM NaCl buffer.

conditions specified in Experimental Procedures. On SDS-PAGE
gel, denatured 6xHis-tagged DepH appeared to have a molec-
ular mass of approximately 36.5 kDa (including a 2.1 kDa
6xHis tag) (Figure 4A). The minor protein band migrating slightly
in front of the major band might result from weak protein
cleavage at a specific point, even though a protease inhibitor
cocktail was added to buffers during purification steps. Without
the presence of a reducing agent in our purification scheme,
DepH is expected to exist in an oxidized form with an intact
disulfide bond formed at the CPYC redox motif/catalytic site
(Figure 2B). By size exclusion chromatography, native 6xHis-
tagged DepH was determined to have an apparent molecular
mass of 71.0 kDa (Figure 4B). These results suggest that DepH
exists as a homodimer under native conditions.

Identification of FAD as a Cofactor of DepH

Several lines of evidence suggested the presence of FAD
cofactor in DepH. First, purified 6xHis-tagged DepH has
adistinctive yellow color, indicating the presence of a flavin pros-
thetic group. Second, the major absorption wavelengths of
DepH were at 377 nm and 455 nm, which are comparable with
those of an FAD standard (Figure 4C). Third, to confirm FAD as
the cofactor, DepH was denatured and the denatured protein
was cleared by centrifugation. The supernatant retained the
distinctive yellow color, suggesting that the suspected cofactor
is not covalently bound to the protein. Subsequently, the super-
natant was subjected to high-performance liquid chromatog-
raphy (HPLC) analysis, along with FAD as a control. The superna-
tant generated a HPLC profile that is essentially identical to that
of FAD standard in terms of retention time and peak shape
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Figure 5. In Vitro Assays of DepH in Converting an Inmediate FK228
Precursor to FK228

(A) A control reaction without DepH and kept at —80°C had ~40% reduced
FK228 converted to FK228 due to spontaneous oxidation in prior steps.

(B) Another control reaction without DepH but kept at room temperature had
~60% reduced FK228 converted to FK228 due to spontaneous oxidation.

(C) A complete assay had 100% reduced FK228 converted to FK228 in 5 min
or less at room temperature.

(D) Mass spectrum of reduced FK228.

(E) Mass spectrum of FK228.

(F) Michaelis-Menten plot for DepH-catalyzed reactions with varying concen-
trations of reduced FK228 substrate. Error bars refer to standard deviation.

(Figure S3). Finally, the suspected cofactor peak was collected
from HPLC and analyzed by LC-MS. The sample yielded a signal
of 785.3 m/z, which is in agreement with the ion signal of FAD
standard (Figure S3 inserts).

The DepH-FAD stoichiometry was approximately 1.1 to 1,
suggesting that each monomeric DepH contains one molecule
of FAD cofactor. This is consistent with a generalized observa-
tion regarding the flavoprotein disulfide reductase-family of
enzymes (Argyrou and Blanchard, 2004).

Enzyme Activity and Kinetics

To assay the enzyme activity of DepH in catalyzing the conver-
sion of an immediate FK228 precursor (reduced FK228) to
FK228 (Figure 1), reduced FK228 was freshly prepared by
reducing FK228 with an excess amount of DTT in acetonitrile/
water (20% v/v), purified with preparative HPLC, dried in vacuo,
and kept airtight at —20°C. Prior to assays, an appropriate
amount of reduced FK228 in amorphous state was resuspended
in acetonitrile to approximately 0.54 mg/ml (1.0 mM).

For qualitative assays performed in duplicate, a fixed amount
of substrate (reduced FK228) was mixed with a fixed amount of
enzyme (DepH) in an appropriate buffer for 5 min at room temper-
ature in a nitrogen environment. The reaction mixture was then
quenched and subjected to LC-MS analysis. Due to unavoidable
spontaneous chemical oxidation during prior purification,
storage, and resuspension steps, a control assay that was
without enzyme and kept at —80°C had approximately 40%
substrate oxidized (Figure 5A); a second control assay that was
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Table 1. Relative Activities of the Wild-Type and Mutants of DepH in Converting Reduced FK228 to FK228

Enzyme Substrates Products Relative Activity (%)
Blank (buffer) Reduced FK228, NADP* - = 0

DepH Reduced FK228, NADP* FK228, NADPH 100

DepH-C156S Reduced FK228, NADP* FK228, NADPH 7.5

DepH-C159S Reduced FK228, NADP* FK228, NADPH 3.8
DepH-C156S/C159S Reduced FK228, NADP* FK228, NADPH 3.6

without enzyme but kept at room temperature in a nitrogen gas-
filed chamber had approximately 60% substrate oxidized
(Figure 5B). In a complete assay, 100% of substrate was oxidized
in 5 min or less (Figure 5C). The identity of reduced FK228 and
FK228 (oxidized) was confirmed by subsequent LC-MS analysis
(Figures 5D and 5E). Reduced FK228 with two free thiol groups is
more polar, and was eluted slightly earlier than FK228.

Single point mutants (C156S or C159S) and a double mutant
(C156S/C159S) of the redox motif (CPYC) of DepH were ob-
tained by site-directed mutagenesis, and the mutant proteins
were purified to homogeneity accordingly (Figure S4). The rela-
tive activities of three mutant forms of DepH compared with
that of wild-type DepH were determined (Table 1). It was found
that mutation of either or both cysteine residues in the redox
motif resulted in a drastic reduction of activity, suggesting that
both cysteine residues are critical for enzyme activity.

For steady-state kinetic assays, variable concentrations of
substrate (reduced FK228) were assayed with a fixed amount
of enzyme (DepH) in an appropriate buffer for variable durations
of time at room temperature in a nitrogen environment. Assay
reactions were stopped by mixing with iodoacetamide, which
reacts with free thiol groups to form a stable adduct (Mieyal
et al., 1991). This adduct of reduced FK228 was quantified
by LC-MS analysis. The DepH catalytic parameters toward
reduced FK228 in the presence of NADP* were determined to
be Vipax = 2.6 £ 0.2 ptM min~", Ky = 11.7 £ 0.5 uM, Kear = 1.4 X
10% + 0.2 min™", and keat/Km = 12.0 uM~" - min~" (Figure 5F).
When NADP* was replaced by NAD*, the K, was measured to
be 19.4 + 0.9 uM. Therefore, NADP* is a preferred electron
acceptor of DepH for the reaction.

DISCUSSION

Disulfide bonds are common in proteogenic biomolecules but
rare in natural products produced nonribosomally by bacteria.
In proteogenic biomolecules such as proteins and peptides, di-
sulfide bonds often serve to maintain structural integrity or to
mediate redox cycling of enzyme activity (Giles et al., 2003; Ka-
dokura et al., 2003). In natural products there are two scenarios
(Figure 1). First, as seen in the quinoxaline family of antibiotics,
disulfide bonds exist either as a transit stage of biosynthesis or
as a part of the final static structure; they might contribute to
the stability of molecules but are not critical for bioactivity.
Second, as seen in FK228 and likely in spiruchostatins as well,
disulfide bonds serve to not only stabilize the molecules in the
form of prodrug, but also mediate the mechanism of bioactivity.
In the last case, once the disulfide bond is opened by cellular
reduction, a freed thiol group selectively chelates the Zn* ion
of class | HDACs, thus inhibiting the enzyme activities (Nakajima

et al., 1998). Selective but modest inhibition of HDAC activities
leads to a cascade of epigenetic consequences including chro-
matin remodeling and cancer regression (Bolden et al., 2006).

There have been extensive studies about disulfide bond
formation in proteogenic biomolecules catalyzed by the thiol-
disulfide oxidoreductase family of enzymes (Kadokura et al.,
2003). In contrast, little is known about disulfide bond formation
in natural products, particularly those of bacterial origin. In this
paper, we have characterized DepH as an FAD-dependent
pyridine nucleotide-disulfide oxidoreductase, specifically and
efficiently catalyzing a disulfide bond formation in FK228, an
epigenetically acting anticancer natural product.

Phylogenetic analysis of protein sequences classified DepH,
TdpH, Ecm17, and a few hypothetical proteins into a unique
group of proteins that share a conserved CPY/FC redox motif,
which is different from that (CAT/VC) of the TrxB/TrxR family of
thioredoxin reducatses or that (CXXC) of the Dsb family of
enzymes (Figure 2). Site-directed mutagenesis also confirmed
the essentiality of both cysteine residues in the CPYC motif of
DepH (Table 1). Therefore, the DepH-family of disulfide bond
formation enzymes might represent a new class of oxidoreduc-
tases specifically involved in natural product biosynthesis. We
are in the process of crystallizing DepH, solving its structure,
and further elucidating the mechanism of DepH-catalyzed disul-
fide bond formation in FK228.

Inspired by prior knowledge about reactions catalyzed by
thioredoxin reductase and thioredoxin (Lennon et al., 1999),
here we propose a cascade of reactions that lead to the oxida-
tion of the immediate FK228 precursor to afford FK228 (Figure 6).
In this model, DepH is produced by bacterial cells in an oxidized
form, which grabs electrons from the immediate FK228
precursor (reduced FK228) and passes the electrons through
cofactor FAD on to NADP*/NADPH-mediated oxidative cellular
processes. As a net consequence, the reduced FK228 is
oxidized with the formation of a disulfide bond to become
FK228. Interesting questions to be answered include how
DepH is produced and maintained in the first place in an oxidized
form in the reducing environment of bacterial cytoplasm, and
whether mature FK228 would be reversibly reduced inside the
bacterial cytoplasm and thus would require constant enzymatic
maintenance.

Deletion of depH led to a drastic decrease of FK228
production by the CvAdepH mutant strain, which confirmed
the critical role of depH in FK228 biosynthesis (Figure 3).
The notably increased accumulation of an immediate FK228
precursor with positive ion signals of [M + 2 + H/Na/K]* m/z
in the extract of this mutant strain suggests that the immediate
FK228 precursor contains two free thiol groups and that the
oxidative conversion from this precursor to FK228 is indeed
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the final step in FK228 biosynthesis. Apparently it takes a dedi-
cated DepH catalyst to efficiently convert the precursor into
FK228 inside the reducing environment of bacterial cells.
Nevertheless, the mutant still produced about 20% as much
FK228 as the wild-type strain. A plausible explanation is that
spontaneous chemical oxidation could slowly convert the
precursor into FK228, despite the reducing microenvironment
of bacterial cells.

However, why is the immediate FK228 precursor in the mutant
strain not accumulated to a level comparable to the FK228 level
in the wild-type strain? We speculate that the precursor with free
thiol groups might be liable to hydrolysis inside or outside of
bacterial cells, or the precursor might be toxic to bacterial cells
by allowing the free thiol groups to interact with some of the
hundreds of Zn?*-containing enzymes (Blencowe and Morby,
2003). If the later speculation were proven true, it could explain
why the C. violaceum no. 968 strain produces FK228 in the
form of a prodrug, because prodrug FK228 with an intact disul-
fide bond is stable, inert, and nontoxic. Prodrug strategy has
become a privileged scheme in modern drug development for
improving physicochemical, biopharmaceutical, or pharmacoki-
netic properties of pharmacologically active agents (Rautio et al.,
2008).

The promising anticancer activities of FK228 and the unique
role of DepH in FK228 biosynthesis entitle the use of the DepH
sequence as bait for genome mining of new biosynthetic gene
clusters that might produce additional FK228-like natural prod-
ucts. In fact, we have identified a strong homolog of DepH that
we named TdpH (GenBank accession number ABC38333),
which is putatively encoded by a gene (BTH_/2359) in the pub-
lished genome of B. thailandensis E264 (Kim et al., 2005).
DepH and TdpH sequences share a 72% identity/85% similarity.
The TdpH-encoding gene is located within a cryptic biosynthetic
gene cluster that shares striking similarity to the FK228 biosyn-
thetic gene cluster, and our laboratory is currently exploring
this finding for the discovery of FK228-like compounds from
B. thailandensis E264.

Furthermore, DepH, TdpH, and Ecm17 are the only known or
proposed enzymes involved in disulfide bond formation in
natural products; therefore, their genes can be exploited in
biosynthetic pathway engineering schemes for the formation of
disulfide bonds in new drug molecules. Similarly, the DepH,
TdpH, and Ecm17 proteins can be exploited in chemoenzymatic
synthesis schemes for in vitro conversion of synthetic precursors
containing two free thiol groups into final products with a disulfide
bond.

Finally, disulfide bond formation in FK228 biosynthesis ap-
peared to be a rate-limiting step; overexpression of depH has
led to an increased vyield of FK228 in the CvAdepH/pBMTL3-

+
NADP Oxidative
cellular
processes
NADPH
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Figure 6. Proposed Sequence of Oxidation-
Reduction Reactions in the Final Step of
FK228 Biosynthesis

Abbreviations or symbols: FK228=(SH),, the
reduced form of FK228 (immediate FK228
precursor); FK228=(S-S), the oxidized (natural)
form of FK228; DepH=(SH),, the reduced form of
DepH; DepH=(S-S), the oxidized form of DepH;
FAD.x, the oxidized form of FAD; FAD,eq, the
reduced form of FAD.

depH complementant strain as well as in the wild-type control
strain CvWT/pBMTL3-depH (Figure 3). This finding provides
opportunities for improving the yield of FK228 or related natural
products by genetic engineering.

SIGNIFICANCE

The biochemistry of disulfide bond formation in nonriboso-
mally produced natural products, including some important
anticancer agents, is largely unknown. In this work, we
genetically confirmed the involvement of depH in the biosyn-
thesis of FK228, an epigenetically acting anticancer natural
product produced by Chromobacterium violaceum no. 968,
and we biochemically characterized DepH as an FAD-depen-
dent pyridine nucleotide-disulfide oxidoreductase, specifi-
cally and efficiently catalyzing a disulfide bond formation in
FK228. Sequence analysis suggested that DepH contains
a signature redox motif CPYC, a conserved FAD-binding
domain, and an NADP*/NADPH-binding domain. When either
or both cysteine residues in the redox motif were mutated,
the protein lost most of its catalytic activity. We speculate
that this motif might represent a subfamily of disulfide oxido-
reductases specifically involved in secondary metabolism.
We further showed that deletion of depH led to a drastic
decrease of FK228 production, while the relative abundance
of the immediate FK228 precursor increased notably. Inter-
estingly, complementation of the depH-deletion mutant
with depH restored FK228 production to a level 30% higher
than that of the wild-type strain. Additionally, we showed
that purified 6xHis-tagged DepH protein in native form is
a homodimer of 71.0 kDa, with each monomer contains one
molecule of FAD cofactor. Finally we showed that DepH
can efficiently convert the immediate FK228 precursor into
FK228 in the presence of an NADP"* electron acceptor, and
the catalytic parameters are V,,,, = 2.6 = 0.2 pM min~",
K =11.7 £ 0.5 uM, Kcae = 1.4 X 102+ 0.2 min~", and kcae/Kom, =
12.0 uM~" - min~. To the best of our knowledge, this work
represents the first biochemical characterization of an
enzyme involved in disulfide bond formation in a nonriboso-
mally produced bacterial natural product.

EXPERIMENTAL PROCEDURES

Bacterial Strains, Media, and Growth Conditions

Bacterial strains and plasmids used in this study are summarized in Table S1.
All chemicals, biochemicals, and media components were purchased from
Fisher Scientific (Pittsburgh, PA), unless otherwise indicated. C. violaceum
no. 968 and E. coli strains were maintained, cultivated, and genetically manip-
ulated as described elsewhere (Cheng et al., 2007), except that only 1% (w/v)
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Diaion HP-20 (Supelco, Bellefonte, PA) resin was added to fermentation
medium to absorb bacterial byproducts.

DNA Manipulation, PCR, Cloning, and Sequencing

General DNA manipulations were performed according to standard protocols
(Sambrook and Russell, 2000). Bacterial genomic DNA was extracted with an
UltraClean microbial DNA isolation kit from MO BIO Labs (Carlsbad, CA). DNA
modification enzymes and restriction enzymes were purchased from New
England BioLabs (Ipswich, MA). Oligonucleotide primers were ordered from
Operon (Huntsville, AL). QlAprep plasmid purification kit and QIAEX Il gel
extraction kit were from QIAGEN (Valencia, CA). Polymerase chain reaction
(PCR) was performed on a DNA Engine Dyad thermocycler (Bio-Rad,
Hercules, CA). DNA sequencing was performed with an ABI 3730 automated
DNA sequencer (Applied BioSystems, Forster City, CA) at the University of
Wisconsin-Madison Biotechnology Center.

Gene Deletion, FRT Cassette Removal, and Gene Complementation
The general scheme of using a broad host-range Flp-FRT recombination
system for site-specific gene replacement/deletion and marker removal has
been described elsewhere (Choi and Schweizer, 2005; Hoang et al., 1998),
but was modified in this study (Figures S1 and S2).

To construct a depH-gene replacement vector, two DNA fragments (ampli-
cons) were first amplified by PCR from total DNA of the wild-type C. violaceum
no. 968 strain: a 470 bp 5'-end of depH gene fragment (amplicon 1) was ampli-
fied with primer set Kpnl-depH-UpF (5'-AGGTACCGGGATTCGTCGCTGTTG
C-3') and FRT-F-depH-UpR (5'- TCAGAGCGCTTTTGAAGCTAATTCGATCAC
CAGCACGCGGC-3'), 2460 bp 3'-end of depH gene fragment (amplicon 2) was
amplified with primer set FRT-R-depH-DnF (5'- AGGAACTTCAAGATCCCCAA
TTCGACGGGCTGTTCACGATG-3') and BamHI-depH-DnR (5'- AGGATCCGC
GCGGCGGCTTTGC-3'), and a 1.8 kb FRT cassette containing a Gm” marker
gene and a GFP reporter gene flanked by two FRT recognition sequences
(amplicon 3) was amplified from pPS858 with primer set FRT-F (5'-CGAATTAG
CTTCAAAAGCGCTCTGA-3")and FRT-R (5’- CGAATTGGGGATCTTGAAGTTC
CT-3'). Amplicons 1-3 were assembled into a 2.7 kb amplicon 4 by multiplex
PCR using Long Amp DNA polymerase. Amplicon 4 was digested with Kpnl/
BamHI and the insert was subsequently cloned into suicide vector pEX10Tc
to make a depH-gene replacement vector pYC04-18.

To create a depH-gene replacement mutant of C. violaceum, pYC04-18 was
first transformed into E. coli S17-1 cells, which subsequently passed the vector
to C. violaceum cells via interspecies conjugation. Mutant strains of C. viola-
ceum with depH partially replaced by the FRT cassette were selected on LB
agar supplemented with 200 pg/ml ampicillin (Ap; C. violaceum is naturally
resistant to Ap up to 500 pg/ml), 50 ug/ml gentamicin, and 5% (w/v) sucrose
at 30°C. The genotype of independent mutants was verified by colony PCR
using the primer set depH-F (5'-CGACGTCATCGTGATCGGCGGC-3') and
depH-R (5'- CATTTCCTGAGCGGTCAGGC-3') (Figure S2A). One representa-
tive mutant strain was saved and named CvAdepH::FRT.

To create a marker-free mutant by removing the FRT cassette from
CvAdepH::FRT, a broad host-range Flp-expression vector was first construc-
ted. A 5.16 kb Sacl/Sphl fragment containing the c/857 < Pis-P; > flp-Psac >
sacB genetic determinants was excised from pFLP2, blunt ended, and cloned
into the EcoRYV site of pBMTL-3 to make pBMTL3-FLP2. This vector replicates
in a broad range of bacterial hosts at or above 37°C and expresses a site-
specific Flp endonuclease. Vector pBMTL3-FLP2 was introduced into
CvAdepH::FRT by electroporation and marker-free mutants were selected
on LB agar supplemented with 200 ug/ml Ap and 25 ug/ml chloramphenicol
(Cm) at 37°C. Vector pBMTL3-FLP2 was subsequently cured from the mutants
by steaking for two rounds on LB agar supplemented with 200 pg/ml Ap and
5% (w/v) sucrose at 30°C. The genotype of independent gene-deletion
mutants was verified by colony PCR using the primer set depH-F and depH-R
(Figure S2B). One final representative marker-free mutant strain was saved
and named CvAdepH.

To complement the CvAdepH mutant and CvWT strain (as control) with
a functional depH gene on a vector, the entire depH ORF (960 bp) was ampli-
fied from genomic DNA with primer set depH-exp-FP (5'-GTCTAGACATATGA
AGGCCGCCCGCGCG-3') and depH-exp-RP (5'-GCAAGCTTTCACCCGAAC
ACCAACTTGCG-3'). This product was digested with Ndel/Hindlll and the
insert was cloned into pET29a to make pET29a-depH intermediate construct.

The depH ORF along with an upstream ribosomal binding site from the vector
was excised by Xbal/Hindlll digestion from pET29a-depH and cloned into
pBMTL-3 to make the final depH complementation vector pBMTL3-depH.
The gene fidelity was verified by resequencing and the vector was introduced
by conjugation into CvAdepH mutant to create a complementation strain
CvAdepH/pBMTL3-depH and into CvWT to create a control strain CvWT/
pBMTL3-depH.

Bacterial Fermentation, Extraction, Identification,
and Quantification of FK228, and Preparation of Reduced FK228
Fermentation of the CvWT strain, CvAdepH mutant strain, CvAdepH/pBMTL3-
depH complementant strain, and CvWT/pBMTL3-depH control strain of
C. violaceum in 50 ml nutrient broth supplemented with 200 pg/ml Ap, 1%
(w/v) of Diaion HP-20 resins, and with 0.5% (v/v) lactose (lactose induces the
expression of depH on the pBMTL-3 vector) for 4 days at 30°C, was performed
similarly as described elsewhere (Cheng et al., 2007). After fermentation resins
and cell debris of each strain were collected by centrifugation and lypholized to
dryness. Ten ml of ethyl acetate was used to extract the dried mass and 20 pl of
such organic extract was analyzed with an Agilent 1100 series LC/MSD Trap
mass spectrometer (Agilent, Santa Clara, CA) for the detection and quantifica-
tion of FK228 production by relating the peak area of ion signals to that of FK228
standard, as described elsewhere (Cheng et al., 2007; Hwang et al., 2004).
Alarger quantity of FK228 was purified from 15 L fermentation culture of wild-
type C. violaceum according to a previously published procedure (Ueda et al.,
1994), and saved as amorphous powder at —20°C until use. To prepare for the
immediate FK228 precursor (reduced FK228 with two free thiols), a proper
amount of FK228 was redissolved in acetonitrile/water (20% v/v) and mixed
overnight at room temperature with 50 mM DTT. Reduced FK228 (almost
100% reduction) was purified from reaction mixture by preparative HPLC on
a ProStar HPLC system (Varian, Walnut Creek, CA) with a 10 pm particle
size, 21.2 x 250 mm Prep-C18 column (Agilent). A gradient from 100% buffer
A (20% acetonitrile) to 100% buffer B (100% acetonitrile) was achieved in
30 min. The fraction containing the reduced FK228 was lypholized and stored
airtight at —20°C until use. Reduced FK228 was readily redissolved in acetoni-
trile to make suitable concentrations of substrate solution for enzymatic assays.

DepH Overexpression and Purification, and Site-Directed
Mutagenesis

The previously amplified depH ORF (960 bp) was cloned into the Ndel/Hindlll
sites of pET28a to make pCW01-1212 in E. coli DH5¢. cells. The DNA fidelity
was verified by sequencing and the vector was introduced into E. coli
BL21(DE3) cells for protein overexpression and purification.

E. coli BL21(DE3)/pCW01-1212 was cultured in 4 L LB medium supple-
mented with 50 pg/ml kanamycin at 37°C to reach an ODggo of 0.6. Then
IPTG was added to a final concentration of 0.05 mM to induce gene expression
and the cells were further cultured at 28°C for 12 hr. Cells were harvested
by centrifugation and resuspended in 50 ml lysis buffer (50 mM phosphate
[pH 7.0], 300 mM NaCl, 0.1% [v/v] Tween-20, and two complete EDTA free
protease inhibitor cocktail tablets [Roche, Indianapolis, IN]). Cells were broken
by passing twice through a French Press (Sim-Aminco) and cell lysate was
clarified by centrifugation at 48,400 g for 30 min at 4°C. The resulting superna-
tant was loaded on a Ni-NTA agarose column (QIAGEN) that was equilibrated
with a wash buffer (50 mM phosphate [pH 7.0], 300 mM NaCl, and 20 mM imid-
azole) and the column was washed extensively with the same wash buffer.
DepH was eluted with an elution buffer (50 mM phosphate [pH 7.0], 300 mM
NaCl, and 250 mM imidazole). The purified protein was dialyzed using a 6—
8 kDa Spectra/Pro membrane tubing (Spectrum; Gardena, GA) at 4°C against
a storage buffer (20 mM Tris-HCI [pH 7.0], and 100 mM NaCl) overnight.
Because DepH is expected to exist naturally in an oxidized form with an intact
disulfide bond, no reducing agent (e.g., DTT or 2-mercaptoethanol) was added
to the purification steps. The purity of DepH was assessed by SDS-PAGE and
the protein concentration was determined by Bradford assay (Bradford, 1976),
using bovine serum albumin as a standard. Finally aliquots of DepH were flash
frozen and stored at —80°C until use.

Site-directed mutagenesis to create single mutants (C156S or C159S) and
a double mutant (C156S/C159S) of DepH were accomplished using the Quik-
Change Lightning Site-Directed Mutagenesis Kit (Stratagene, La Jolla, CA)
and the following primer pairs (where underlined letters indicate base
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change): C156S-F (5'-GGAAAGCGTGTTCCACTCCCCTTACTGCCACG-3')and
C156S-R (5'-CGTGGCAGTAAGGGGAGTGGAACACGCTTTCC-3'), C159S-F
(5'-CACTGCCCTTACTCCCACGGCTACGAACTG-3) and C159S-R (5
CAGTTCGTAGCCGTGGGAGTAAGGGCAGTGG-3), and C156S/C159S-F
(5'-GCGTGTTCCACTCCCCTTACTCCCACGGCTACG-3) and  C156S/
C159S-R (5'-CGTAGCCGTGGGAGTAAGGGGAGTGGAACACGC-3'). Mutated
depH genes based on pCW01-1212 were verified by sequencing, and mutant
proteins were purified with the same procedure as for the wild-type DepH.

Determination of Physical and Biochemical Properties of DepH

The oligomeric status of DepH was determined by size exclusion chromatog-
raphy at 4°C using the AKTA Prime FPLC equipped with a HiPrep Sephacryl
26/60 S300 high-resolution column (GE Life Sciences, Piscataway, NJ).
Running buffer used was 20 mM Tris-HCI (pH 7.0) and 100 mM NaCl, and the
flow rate was 0.5 ml/min. Protein elution was monitored at UV,go. To establish
a reference curve, gel-filtration molecular weight markers (Sigma-Aldrich)
including blue dextran (2000 kDa), amylase from sweet potato (200 kDa),
alcohol dehydrogenase from yeast (150 kDa), bovine serum albumin (66 kDa),
carbonic anhydrase from bovine (29 kDa), and cytochrome c from horse heart
(12.4 kDa) were used. DepH was analyzed separately or in combination with
some markers under the same conditions.

Ultraviolet and visible (UV/Vis) spectra of DepH (36 pM in 20 mM Tris-HCI
[pH 7.0] and 100 mM NaCl buffer) and FAD standard (25 uM in the same buffer)
from 200 to 800 nm were obtained sequentially with Cary 100 Bio spectropho-
tometer (Varian, Walnut Creek, CA) at room temperature.

The presence of FAD cofactor in DepH was determined by HPLC and
LC-MS analysis. Separation of sample was performed on a ProStar HPLC
system from Varian, equipped with the Eclipse XBD C18 column (5 um particle
size, 4.6 x 250 mm) from Agilent. Flow rate was maintained at 1 ml/min and the
column was equilibrated with a buffer mixture of 85% solvent A (5 mM ammo-
nium acetate [pH 6.5]/15% solvent B [100% methanol]). DepH (36 uM) was
denatured by boiling at 100°C for 5 min to free the cofactor. Denatured
protein was removed by centrifugation and 20 pl supernatant was analyzed
by HPLC. Alinear gradient from the equilibration stage to a final buffer compo-
sition of 25% solvent A/75% solvent B was achieved in 20 min. The ultraviolet
irradiation absorbance of cofactor was monitored at 264 nm. An HPLC fraction
containing the cofactor was dried in vacuo, resuspended in 50 ul acetonitrile,
and examined by LC-MS analysis. FAD standard (25 pM) was used as a
reference.

The stoichiometry of DepH-FAD was determined in duplicate as follows.
An aliquot of DepH (36 uM) was saturated with an excess amount of FAD
(1 mM) at 4°C overnight and was then dialyzed against the storage buffer
(20 mM Tris-HCI [pH 7.0], and 100 mM NaCl) to remove unbound FAD.
DepH concentration was redetermined using Bradford assay. DepH was
subsequently denatured by boiling for 5 min to release bound FAD. FAD
concentration was determined from the absorption at 450 nm, measured on
a Cary 100 Bio spectrophotometer (Varian) at room temperature, using a molar
extinction coefficient of Ayso = 11.0 mM~" - cm™". Buffer was used as a blank
for background subtraction.

Determination of Enzyme Activity and Enzyme Kinetics

Enzyme Activity of the Wild-Type and Mutated Forms of DepH

First, the reaction buffer (20 mM Tris-HCI [pH 7.0], 100 mM NaCl, with 200 pM
NADP™) used in assays was purged extensively with bubbling of nitrogen gas.
For a complete assay, 5 pl reduced FK228 (~100 uM) and 1 pul enzyme solution
(36 uM) were added into 95 ul reaction buffer and the reaction was allowed to
proceed for 5 min at room temperature in a nitrogen-gas-filled chamber. Each
reaction was quenched with 400 pl ice-cold acetone for 5 min on ice. Acetone
was then removed by a flow of nitrogen gas and the remaining solution was
analyzed with LC-MS. Enzyme was omitted from control reactions, which
were kept either in a —80°C freezer or at room temperature, and received
the same treatment as the complete reaction until LC-MS analysis. The total
time needed from the start of reaction to LC-MS analysis was about 20 min.
All reactions were assayed in duplicate.

Enzyme Kinetics of DepH

Due to a high rate of reaction and unavoidable spontaneous chemical oxida-
tion, the assay conditions were optimized by numerous tests (data not shown).
The reactions were performed in 30 ul buffer (20 mM Tris-HCI [pH 7.0], 100 mM
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NaCl, 200 M NADP* or NAD") at room temperature in a nitrogen-gas-filled
chamber. Variable concentration of substrate (reduced FK228, from 2 to
80 uM final concentration) and fixed amount of enzyme DepH (0.02 pg;
18 nM final concentration) was added into each reaction. Five microliters of
500 mM iodoacetamide was used to stop reactions and to block free thiol
groups at different time points (0, 0.5, 1, 2, and 4 min). Afterwards, 20 pl of
each reaction mixture was analyzed with LC-MS. All reactions were assayed
in duplicate. Values from the 0 min time point were used for background
subtraction.

ACCESSION NUMBERS

The sequence reported in this article has been deposited into GenBank under
accession number EF210776 (Cheng et al., 2007).

SUPPLEMENTAL DATA

Supplemental Data include one table and four figures and can be found with
this article online at http://www.cell.com/chemistry-biology/supplemental/
S$1074-5521(09)00152-5.

ACKNOWLEDGMENTS

We thank Herbert Schweizer for providing vectors pPS858, pEX18Tc, and
pFLP2, and Ryan Gill for providing vector pBMTL-3. We thank Patrick Ander-
son for assistance with LC-MS, and Daad Saffarini for assistance with lysis of
cells on a French press. We further thank Michael Thomas for critical reading of
the manuscript, and we appreciate anonymous reviewers’ helpful comments.
This work was supported by a University of Wisconsin-Milwaukee Research
Growth Initiative Award and by a US Department of Defense Breast Cancer
Research Program Idea Award W81XWH-08-1-0673.

Received: January 13, 2009
Revised: April 23, 2009
Accepted: May 8, 2009
Published: June 25, 2009

REFERENCES

Akif, M., Suhre, K., Verma, C., and Mande, S.C. (2005). Conformational flexi-
bility of Mycobacterium tuberculosis thioredoxin reductase: crystal structure
and normal-mode analysis. Acta Crystallogr. D Biol. Crystallogr. 67, 1603—
1611.

Argyrou, A., and Blanchard, J.S. (2004). Flavoprotein disulfide reductases:
advances in chemistry and function. Prog. Nucleic Acid Res. Mol. Biol. 78,
89-142.

Bardwell, J.C., McGovern, K., and Beckwith, J. (1991). Identification of
a protein required for disulfide bond formation in vivo. Cell 67, 581-589.
Blencowe, D.K., and Morby, A.P. (2003). Zn(ll) metabolism in prokaryotes.
FEMS Microbiol. Rev. 27, 291-311.

Bolden, J.E., Peart, M.J., and Johnstone, R.W. (2006). Anticancer activities of
histone deacetylase inhibitors. Nat Rev. Drug Discov. 5, 769-784.

Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of
microgram quantities of protein utilizing the principle of protein-dye binding.
Anal. Biochem. 72, 248-254.

Bryk, R., Lima, C.D., Erdjument-Bromage, H., Tempst, P., and Nathan, C.
(2002). Metabolic enzymes of mycobacteria linked to antioxidant defense by
a thioredoxin-like protein. Science 295, 1073-1077.

Cheng, Y.Q., Yang, M., and Matter, A.M. (2007). Characterization of a gene
cluster responsible for the biosynthesis of anticancer agent FK228 in Chromo-
bacterium violaceum No. 968. Appl. Environ. Microbiol. 73, 3460-3469.
Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T.J., Higgins, D.G.,
and Thompson, J.D. (2003). Multiple sequence alignment with the Clustal
series of programs. Nucleic Acids Res. 37, 3497-3500.

592 Chemistry & Biology 16, 585-593, June 26, 2009 ©2009 Elsevier Ltd All rights reserved


www.ncbi.nlm.nih.gov
http://www.cell.com/chemistry-biology/supplemental/S1074-5521(09)00152-5
http://www.cell.com/chemistry-biology/supplemental/S1074-5521(09)00152-5

Chemistry & Biology
Disulfide Bond Formation in FK228

Choi, K.H., and Schweizer, H.P. (2005). An improved method for rapid gener-
ation of unmarked Pseudomonas aeruginosa deletion mutants. BMC Micro-
biol. 5, 30.

Dawson, S., Malkinson, J.P., Paumier, D., and Searcey, M. (2007). Bisinterca-
lator natural products with potential therapeutic applications: isolation,
structure determination, synthetic and biological studies. Nat. Prod. Rep. 24,
109-126.

Giles, N.M., Watts, A.B., Giles, G.I., Fry, F.H., Littlechild, J.A., and Jacob, C.
(2003). Metal and redox modulation of cysteine protein function. Chem. Biol.
10, 677-693.

Hoang, T.T., Karkhoff-Schweizer, R.R., Kutchma, A.J., and Schweizer, H.P.
(1998). A broad-host-range Flp-FRT recombination system for site-specific
excision of chromosomally-located DNA sequences: application for isolation
of unmarked Pseudomonas aeruginosa mutants. Gene 212, 77-86.

Hwang, K., Piekarz, R.L., Bates, S.E., Figg, W.D., and Sparreboom, A. (2004).
Determination of the cyclic depsipeptide FK228, a histone deacetylase inhib-
itor, by liquid chromatography-mass spectrometry. J. Chromatogr. B Analyt.
Technol. Biomed. Life Sci. 809, 81-86.

Jacob, C. (2006). A scent of therapy: pharmacological implications of natural
products containing redox-active sulfur atoms. Nat. Prod. Rep. 23, 851-863.
Kadokura, H., Katzen, F., and Beckwith, J. (2003). Protein disulfide bond
formation in prokaryotes. Annu. Rev. Biochem. 72, 111-135.

Kim, H.S., Schell, M.A., Yu, Y., Ulrich, R.L., Sarria, S.H., Nierman, W.C., and
DeShazer, D. (2005). Bacterial genome adaptation to niches: divergence of
the potential virulence genes in three Burkholderia species of different survival
strategies. BMC Genomics 6, 174.

Lennon, B.W., Williams, C.H., Jr., and Ludwig, M.L. (1999). Crystal structure of
reduced thioredoxin reductase from Escherichia coli: structural flexibility in the
isoalloxazine ring of the flavin adenine dinucleotide cofactor. Protein Sci. 8,
2366-2379.

Lombo, F., Velasco, A., Castro, A., de la Calle, F., Brana, A.F., Sanchez-
Puelles, J.M., Mendez, C., and Salas, J.A. (2006). Deciphering the biosynthesis
pathway of the antitumor thiocoraline from a marine actinomycete and its
expression in two streptomyces species. ChemBioChem 7, 366-376.

Martin, J.L., Bardwell, J.C., and Kuriyan, J. (1993). Crystal structure of the
DsbA protein required for disulphide bond formation in vivo. Nature 365,
464-468.

Masakuni, O., Toshio, G., Takashi, F., Yasuhiro, H., and Hirotsugu, U. (1991).
FR901375 substance and production thereof. JP3141296 (A).

Masuoka, Y., Nagai, A., Shin-ya, K., Furihata, K., Nagai, K., Suzuki, K.,
Hayakawa, Y., and Seto, H. (2001). Spiruchostatins A and B, novel gene

expression-enhancing substances produced by Pseudomonas sp. Tetrahe-
dron Lett. 42, 41-44.

Mieyal, J.J., Starke, D.W., Gravina, S.A., and Hocevar, B.A. (1991). Thioltrans-
ferase in human red blood cells: kinetics and equilibrium. Biochemistry 30,
8883-8891.

Nakajima, H., Kim, Y.B., Terano, H., Yoshida, M., and Horinouchi, S. (1998).
FR901228, a potent antitumor antibiotic, is a novel histone deacetylase inhib-
itor. Exp. Cell Res. 241, 126-1383.

Nakamoto, H., and Bardwell, J.C. (2004). Catalysis of disulfide bond formation
and isomerization in the Escherichia coli periplasm. Biochim. Biophys. Acta
1694, 111-119.

Nogle, L.M., and Gerwick, W.H. (2002). Somocystinamide A, a novel cytotoxic
disulfide dimer from a Fijian marine cyanobacterial mixed assemblage. Org.
Lett. 4, 1095-1098.

Rautio, J., Kumpulainen, H., Heimbach, T., Oliyai, R., Oh, D., Jarvinen, T., and
Savolainen, J. (2008). Prodrugs: design and clinical applications. Nat. Rev.
Drug Discov. 7, 255-270.

Sambrook, J., and Russell, D.W. (2000). Molecular Cloning: A Laboratory
Manual, Third Edition (Cold Spring Harbor, NY: Cold Spring Harbor Labora-
tory).

Shigematsu, N., Ueda, H., Takase, S., Tanaka, H., Yamamoto, K., and Tada, T.
(1994). FR901228, a novel antitumor bicyclic depsipeptide produced by
Chromobacterium violaceum No. 968. Il. Structure determination. J. Antibiot.
(Tokyo) 47, 311-314.

Tang, G.L., Cheng, Y.Q., and Shen, B. (2004). Leinamycin biosynthesis
revealing unprecedented architectural complexity for a hybrid polyketide
synthase and nonribosomal peptide synthetase. Chem. Biol. 77, 33-45.

Ueda, H., Manda, T., Matsumoto, S., Mukumoto, S., Nishigaki, F., Kawamura,
I., and Shimomura, K. (1994). FR901228, a novel antitumor bicyclic depsipep-
tide produced by Chromobacterium violaceum No. 968. lll. Antitumor activities
on experimental tumors in mice. J. Antibiot. (Tokyo) 47, 315-323.

Waksman, G., Krishna, T.S., Williams, C.H., Jr., and Kuriyan, J. (1994). Crystal
structure of Escherichia coli thioredoxin reductase refined at 2 A resolution.
Implications for a large conformational change during catalysis. J. Mol. Biol.
236, 800-816.

Watanabe, K., Hotta, K., Praseuth, A.P., Koketsu, K., Migita, A., Boddy, C.N.,
Wang, C.C., Oguri, H., and Oikawa, H. (2006). Total biosynthesis of antitumor
nonribosomal peptides in Escherichia coli. Nat. Chem. Biol. 2, 423-428.

Yoo, C.B., and Jones, P.A. (2006). Epigenetic therapy of cancer: past, present
and future. Nat. Rev. Drug Discov. 5, 37-50.

Chemistry & Biology 76, 585-593, June 26, 2009 ©2009 Elsevier Ltd All rights reserved 593



SUPPLEMENTARY DATA

An FAD-Dependent Pyridine Nucleotide-Disulfide
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TABLE S1. Bacterial Strains and Plasmids Used in This Study

Strains or Plasmids

Description

Source or Reference

Chromobacterium violaceum strains
No. 968 (= FERM BP-1968)

CvAdepH::FRT

CvAdepH
CvWT/pBMTL3-depH

CvAdepH/pBMTL3-depH

Escherichia coli

DH5a.
S17-1
BL21(DE3)

Plasmids
Cosmid 8

pPS858
pEX18Tc

pYC04-18
pFLP2
pBMTL-3
pBMTL3-FLP2

pET28a and pET29a
pET29a-depH

pBMTL3-depH

pCW01-1212

Wild type strain, FK228 producer, Ap' Thio™

Mutant strain with an internal part of the depH
replaced by an FRT cassette (Gm" GFP) from
pPS858

Mutant strain derived from CvAdepH::FRT with the
FRT cassette excised

Wild type strain harboring a depH complementation
vector pPBMTL3-depH

Mutant strain CvAdepH harboring a depH
complementation vector pBMTL3-depH

General cloning host
Host strain for interspecies conjugation
Host strain for protein expression

Cosmid clone containing the FK228 biosynthetic
gene cluster (dep) and flanking regions; Ap" Kan'
Source of the FRT cassette; Ap’ Gm' GFP*

Gene replacement vector; conjugative; Tc' oriT
sacB®

depH gene replacement construct based on
pEX18Tc

Vector that produces a Flp endonuclease
specifically recognizes the FRT site; Ap oriT sacB*
Broad host-range gene expression vector;
conjugative; Cm' mob pLac

A broad host-range Flp-expression vector based on
pFLP2 and pBMTL-3

Vectors for protein overexpression; Ap’ Kan'
Intermediate vector with depH cloned at
Ndel/Hindlll sites of pET29a

depH gene complementation vector based on
pBMTL-3

DepH overexpression vector with depH cloned at
Ndel/Hindlll sites of pET28a

IPOD” (Ueda et al.,
1994)

This study

This study

This study

This study

Laboratory stock
Laboratory stock
Novagen (Madison,
WI)

(Cheng et al., 2007)

(Hoang et al., 1998)
(Hoang et al., 1998)

This study

(Hoang et al., 1998)
(Lynch and Gill, 2006)
This study

Novagen
This study

This study

This study

@Thio', thiostrepton resistance.

1POD, International Patent Organism Depositary, Tsukuba, Japan.



Figure S1. Maps of Vectors and Constructs

Suicide vector pEX18Tc (Hoang et al., 1998) was used to carry a chimeric cassette (Figure S2)
for gene deletion of depH. Vector pFLP2 (Hoang et al., 1998) was the donor for sacB-FLP gene
cassette. Vector pBMTL-3 (Lynch and Gill, 2006) was used to create a Flp-expression vector
pBMTL3-FLP2 and a gene complementation vector pBMTL3-depH. All maps were drawn with
Vector-NTI software (Invitrogen, Carlsbad, CA). The sizes of gene/vector are not necessarily in

scale.



Scheme of depH in wild type strain
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Figure S2. Deletion of an Internal Part of depH

(A) Scheme of multiplex PCR for the construction of a gene deletion vector and subsequent
creation of mutant strains. (B) PCR examination of the genotype of the wild type and mutant
strains of C. violaceum No. 968. Lane 1, 1-kb DNA marker; Lane 2: wild type strain (1.0-kb PCR
product); Lane 3: vector pYC04-18 (2.4-kb PCR product); Lane 4: CvAdepH::FRT mutant strain
(2.4-kb PCR product); Lane 5: CvAdepH mutant strain (0.6-kb PCR product). Due to secondary
structures formed by the highly homologous FRT recognition sequences, PCRs typically

generate certain level of background.



FAD Standard FAD from DepH
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Figure S3. Identification of FAD as a Cofactor of DepH.
HPLC profile and mass spectrum of the extracted FAD cofactor from DepH in comparison with
those of FAD standard. Both the HPLC retention time and the ion signal of subjects are almost

identical.
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Figure S4. Purified Wild Type (DepH-WT) and Mutant Proteins (C156S, C159S and
C156S/C159S) of DepH Visualized by SDS-PAGE Gel. M, molecular weight standards (kDa).
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